|
View: |
Part 1: Document Description
|
|
Citation |
|
|---|---|
|
Title: |
MoLa InCar AR: Dataset for Action Recognition |
|
Identification Number: |
doi:10.34622/datarepositorium/1S8QVP |
|
Distributor: |
Repositório de Dados da Universidade do Minho |
|
Date of Distribution: |
2022-06-02 |
|
Version: |
2 |
|
Bibliographic Citation: |
R. P. Rodrigues, Nelson; M. C. da Costa, Nuno; Novais, Rita; Fonseca, Jaime; Cardoso, Paulo; Borges, Joao, 2022, "MoLa InCar AR: Dataset for Action Recognition", https://doi.org/10.34622/datarepositorium/1S8QVP, Repositório de Dados da Universidade do Minho, V2, UNF:6:t/LCTlQafeWpztygw8cACQ== [fileUNF] |
|
Citation |
|
|
Title: |
MoLa InCar AR: Dataset for Action Recognition |
|
Identification Number: |
doi:10.34622/datarepositorium/1S8QVP |
|
Authoring Entity: |
R. P. Rodrigues, Nelson (University of Minho) |
|
M. C. da Costa, Nuno (University of Minho) |
|
|
Novais, Rita (University of Minho) |
|
|
Fonseca, Jaime (University of Minho) |
|
|
Cardoso, Paulo (University of Minho) |
|
|
Borges, Joao (University of Minho) |
|
|
Other identifications and acknowledgements: |
R. P. Rodrigues, Nelson |
|
Other identifications and acknowledgements: |
R. P. Rodrigues, Nelson |
|
Other identifications and acknowledgements: |
R. P. Rodrigues, Nelson |
|
Other identifications and acknowledgements: |
R. P. Rodrigues, Nelson |
|
Other identifications and acknowledgements: |
R. P. Rodrigues, Nelson |
|
Producer: |
R. P. Rodrigues, Nelson |
|
Grant Number: |
PD/BDE/150500/2019 |
|
Distributor: |
Repositório de Dados da Universidade do Minho |
|
Access Authority: |
R. P. Rodrigues, Nelson |
|
Depositor: |
R. P. Rodrigues, Nelson |
|
Date of Deposit: |
2022-05-31 |
|
Study Scope |
|
|
Keywords: |
Computer and Information Science, Engineering, artificial intelligence, computer vision, action recognition |
|
Abstract: |
We introduce a dataset to train human action recognition inside the vehicle focusing on violence detection. The dataset was recorded with RGB, Depth, Thermal and Event-based data. Results: The resulting dataset contains 6 400 video samples and more than 3 million frames, collected from sixteen distinct subjects. The dataset contains 58 action classes, including violent and neutral (i.e., non-violent) activities. |
|
Methodology and Processing |
|
|
Sources Statement |
|
|
Data Access |
|
|
Notes: |
CC0 Waiver |
|
Other Study Description Materials |
|
|
Related Publications |
|
|
Citation |
|
|
Identification Number: |
10.1007/s00138-020-01131-z |
|
Bibliographic Citation: |
Borges, J., Queirós, S., Oliveira, B. et al. (2021). A system for the generation of in-car human body pose datasets. Machine Vision and Applications, 32. |
|
Citation |
|
|
Identification Number: |
10.5220/0009316205500557 |
|
Bibliographic Citation: |
Borges, J., Oliveira, B., Torres, H. et al. (2020). Automated Generation of Synthetic in-Car Dataset for Human Body Pose Detection. In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, ISBN 978-989-758-402-2; ISSN 2184-4321, pages 550-557. |
|
File Description--f1701 |
|
|
File: subjects_info.tab |
|
|
|
|
Notes: |
UNF:6:t/LCTlQafeWpztygw8cACQ== |
|
List of Variables: |
|
|
Variables |
|
|
f1701 Location: |
Variable Format: character Notes: UNF:6:/5nA4VfzAESmYxBv1Pw/CQ== |
|
f1701 Location: |
Summary Statistics: Max. 185.0; Min. 160.0; StDev 8.231798102480406; Valid 16.0; Mean 169.8125 Variable Format: numeric Notes: UNF:6:0vU6VWvHtHFrtP+rUyEVow== |
|
f1701 Location: |
Summary Statistics: Valid 16.0; StDev 5.813776741499453; Min. 25.0; Max. 42.0; Mean 30.25 Variable Format: numeric Notes: UNF:6:JDkQFpRw5PveTiA6nEtzgg== |
|
f1701 Location: |
Summary Statistics: Valid 16.0; Mean 2.1875; Min. 1.0; Max. 4.0; StDev 1.1086778913041726 Variable Format: numeric Notes: UNF:6:oF3eMmj7yOcA7jIPgtSiBg== |
|
f1701 Location: |
Variable Format: character Notes: UNF:6:eoBsBXYJ8apv1ACUZAzrNQ== |
|
Label: |
InCar_GT_annotations.json |
|
Notes: |
application/json |
|
Label: |
InCar_MetaData.txt |
|
Notes: |
text/plain |
|
Label: |
INCAR.zip.001 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.002 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.003 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.004 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.005 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.006 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.007 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.008 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.009 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.010 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.011 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.012 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.013 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.014 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.015 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.016 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.017 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.018 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.019 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.020 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.021 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.022 |
|
Notes: |
application/octet-stream |
|
Label: |
INCAR.zip.023 |
|
Notes: |
application/octet-stream |